Mendelian randomization with fine‐mapped genetic data: Choosing from large numbers of correlated instrumental variables
نویسندگان
چکیده
Mendelian randomization uses genetic variants to make causal inferences about the effect of a risk factor on an outcome. With fine-mapped genetic data, there may be hundreds of genetic variants in a single gene region any of which could be used to assess this causal relationship. However, using too many genetic variants in the analysis can lead to spurious estimates and inflated Type 1 error rates. But if only a few genetic variants are used, then the majority of the data is ignored and estimates are highly sensitive to the particular choice of variants. We propose an approach based on summarized data only (genetic association and correlation estimates) that uses principal components analysis to form instruments. This approach has desirable theoretical properties: it takes the totality of data into account and does not suffer from numerical instabilities. It also has good properties in simulation studies: it is not particularly sensitive to varying the genetic variants included in the analysis or the genetic correlation matrix, and it does not have greatly inflated Type 1 error rates. Overall, the method gives estimates that are less precise than those from variable selection approaches (such as using a conditional analysis or pruning approach to select variants), but are more robust to seemingly arbitrary choices in the variable selection step. Methods are illustrated by an example using genetic associations with testosterone for 320 genetic variants to assess the effect of sex hormone related pathways on coronary artery disease risk, in which variable selection approaches give inconsistent inferences.
منابع مشابه
Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods
Mendelian randomization is the use of genetic instrumental variables to obtain causal inferences from observational data. Two recent developments for combining information on multiple uncorrelated instrumental variables (IVs) into a single causal estimate are as follows: (i) allele scores, in which individual-level data on the IVs are aggregated into a univariate score, which is used as a singl...
متن کاملSensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants
Mendelian randomization investigations are becoming more powerful and simpler to perform, due to the increasing size and coverage of genome-wide association studies and the increasing availability of summarized data on genetic associations with risk factors and disease outcomes. However, when using multiple genetic variants from different gene regions in a Mendelian randomization analysis, it i...
متن کاملA review of instrumental variable estimators for Mendelian randomization
Instrumental variable analysis is an approach for obtaining causal inferences on the effect of an exposure (risk factor) on an outcome from observational data. It has gained in popularity over the past decade with the use of genetic variants as instrumental variables, known as Mendelian randomization. An instrumental variable is associated with the exposure, but not associated with any confound...
متن کاملUse of allele scores as instrumental variables for Mendelian randomization
BACKGROUND An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis t...
متن کاملMendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
BACKGROUND The number of Mendelian randomization analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. However, some genetic variants may not be valid instrumental variables, in particular due to them having more than one proximal phenotyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2017